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Abstract

Long-term operational optimization of energy systems results in challenging, large-scale

problems. These large-scale problems can be directly decomposed into smaller subprob-

lems, in the absence of time-coupling constraints and variables. However, time-coupling

is common in energy systems, e. g. due to (seasonal) energy storage and peak-power

prices. To solve time-coupled long-term operational optimization problems, we propose

the method DeLoop for the Decomposition-based Long-term operational optimization of

energy systems with time-coupling. DeLoop calculates feasible solutions (upper bounds)

by decomposing the operational optimization problem into smaller subproblems. The so-

lutions of these subproblems are recombined to obtain a feasible solution for the original

long-term problem. To evaluate the quality of the feasible solutions, DeLoop computes

lower bounds by linear programming relaxation. DeLoop iteratively decreases the num-

ber of subproblems and employs the Branch-and-Cut procedure to tighten the bounds. In

a case study of an energy system, DeLoop converges fast, outperforming a commercial

state-of-the-art solver by a factor of 32.

Keywords: large-scale MILP, complicating constraints, seasonal storage, net connection

fees, emission targets, time-coupling, solution method
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1. Introduction

On-site energy systems are increasingly widespread in both the industrial and residential

sectors. Optimization of these energy systems can lead to significant economic and eco-

logical benefits (Somma et al., 2015). The optimization of energy systems is a two-stage

problem consisting of a design stage and an operational stage (Lin et al., 2016). In design

optimization, both stages needs to be taken into account. Thus, design optimization also

includes operational optimization, whereas operational optimization is solved based on a

fixed design. In this work, we focus on the operational optimization of energy systems

with a fixed design, as the proposed method is suited for optimal operation. However, to

extend the scope to optimal design problems, the proposed method can be implemented

into the second stage of two-stage algorithms that include the design optimization in the

first stage , e.g. in Bahl et al. (2018a); Baumgärtner et al. (2019a); Baumgärtner et al.

(2019b).

Typically, optimization problems of energy systems are formulated as a mixed-integer

linear programming (MILP) problem (Elia and Floudas, 2014). For small-scale MILP

problems, state-of-the-art solution software is able to quickly provide solutions (Gross-

mann, 2012). The computational effort of the operational problems, however, increases

exponentially with the considered problem size; in fact, operational problems of energy

systems are at least weakly NP-hard (Goderbauer et al., 2019). For operational optimiza-

tion of energy systems, the size of a MILP problem depends on the number of considered

time steps. Thus, the many time steps in long-term operational optimization lead to large-

scale MILP problems. A common solution approach to solve these large-scale MILP

problems is to split them into smaller periods (direct decomposition). The decomposed

periods can be solved independently and often in acceptable time. However, direct decom-

position is only possible if no time-coupling constraints or variables are present (Bradley

et al., 1992). For industrial energy systems, time-coupling constraints and variables are

very common, e. g. by peak-power prices, network connection fees, and cogeneration
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subsidies (Bischi et al., 2019). To still solve large-scale MILP operational problems with

time-coupling constraints, various solution methods exist. Prominent solutions methods

are given in Tab.1.

Table 1: Examples of solution methods for long-term operational optimizations with time-
coupling constraints and variables

Method Examples Strengths (+) / Limits (−)
Model
simplifications

Piacentino and Cardona (2008),
Yokoyama (2013)

}
+ easily applicable
− problem specific

Non-
deterministic

Kazarlis et al. (1996),
Park et al. (2000),
Kavvadias and Maroulis (2010),
Renaldi and Friedrich (2017),
Bischi et al. (2019)


+ allows parallelization
+ accurate model
− no quality measure

Decomposition Yokoyama and Ito (1996),
Al-Agtash and Su (1998),
Rong et al. (2008),
Nasrolahpour et al. (2016),
Wang et al. (2016)


+ allows parallelization
+ accurate model
+ provide quality measure
− slow convergence
− complex formulation

Model simplifications solve such long-term operational problems by simplifying com-

ponent models to reduce the complexity of the optimization problem. For example, Pi-

acentino and Cardona (2008) relax binary variables, and Yokoyama (2013) converts an

MINLP problem into an MILP problem. These simplifications are easy to implement

and render the long-term optimization problem solvable, even when considering time-

coupling constraints and variables. However, model simplifications limit physical accu-

racy of optimization models, which may lead to suboptimal or even infeasible solutions

in practice.

To prevent suboptimal or infeasible solutions, physical accurate models might be neces-

sary. For these more accurate optimization models, non-deterministic methods can be

employed to solve the resulting complex optimization problems. Genetic algorithms have

been used for unit commitment (Kazarlis et al., 1996), for capacity expansion (Park et al.,

2000), and for trigeneration (Kavvadias and Maroulis, 2010). Bischi et al. (2019) use

a rolling horizon approach including long-term foresight by typical weeks for the oper-

ational optimization considering cogeneration subsidies. Renaldi and Friedrich (2017)
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optimize the operation of short- and long-term storage systems by using 2 time grids, one

with short and the other with long time intervals per time step. The advantage of these

non-deterministic methods is that they normally yield good solutions for difficult prob-

lems and often allow fast computation, e. g., by parallelization. However, in general, it

is not possible to evaluate the quality of the proposed solution (Hanne and Dornberger,

2017).

As an alternative, decomposition approaches can be used to obtain solutions of known

solution quality. Decomposition methods have been applied to the optimization of en-

ergy systems with coupling constraints and variables. Problems with coupling constraints

have been decomposed by Dantzig-Wolfe decomposition (Yokoyama and Ito, 1996) and

Lagrangian relaxation (Al-Agtash and Su, 1998; Rong et al., 2008). To decompose prob-

lems with coupling variables, Benders’ decomposition is suitable (Nasrolahpour et al.,

2016). Modified decomposition methods can cope with both time-coupling constraints

and variables in MILP optimizations. To solve problems with both coupling constraints

and variables, Wang et al. (2016) apply a combination of Lagrangian relaxation and Ben-

ders’ decomposition .

Although much progress has been made in automated Dantzig-Wolfe decomposition, it is

still hard to automatically identify an appropriate decomposition. Further, solution times

remain slow for many problems (Bergner et al., 2015). Lagrangian methods require good

multipliers for fast convergence. However, the selection of Lagrangian multipliers is dif-

ficult, which has lead to the development of a large variety of methods (Conejo et al.,

2006). Benders’ decomposition has slow convergence due to many slow iterations. Al-

though methods to improve convergence of Benders’ decomposition have been proposed,

its formulation and implementation remain complex (Rahmaniani et al., 2017).

In this paper, we propose a time-series Decomposition-based solution method for Long-

term operational optimization problems (DeLoop). The proposed solution method De-

Loop copes with both time-coupling constraints and variables in operational optimization.
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DeLoop combines the strengths of the approaches in Tab.1: DeLoop is easily applicable,

uses a physical accurate model, allows for parallelization, and shows fast convergence. A

preliminary version of the proposed time-series decomposition-based solution algorithm

DeLoop has been presented in a conference paper (Baumgärtner et al., 2019b). Here, we

improve convergence of the method, update the case study, and describe all method de-

tails.

In Section 2, we state a generic long-term operational optimization problem with time-

coupling constraints. The proposed method DeLoop is presented in detail in Section 3.

In Section 4, we apply DeLoop to a real-world based industrial operational problem and

validate the results by a computational study. We conclude our findings in Section 5.
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2. Time-coupling constraints and variables in operational optimization

In this section, we state the operational problem for energy systems as a mixed-integer

linear programming (MILP) problem. The MILP formulation is a common problem class

investigated in literature for the optimization of energy systems (Elia and Floudas, 2014).

The stated problem is based on the previous work of our group (Voll et al., 2013; Bahl

et al., 2017, 2018b; Baumgärtner et al., 2019a). Here, we extend the model by time-

coupling constraints: emission limits, seasonal storage, network connection fees, and

peak-power prices. Commonly, these time-coupling constraints extend over one year

of operation. However, our method can handle time-coupling constraints on arbitrary

time horizons. For readability, we present here a simplified version of the problem. The

detailed model formulation can be found in the Supplementary Material A.

We optimize the operational expenditures OPEX of the energy system Eq. (1)

min
V̇n,t ,δn,t ,V̇ max

grid ,V̇grid,t ,Vn,t ,x,y
OPEX

with

OPEX :=

f uel/electricity costs︷ ︸︸ ︷
∑

t∈T

(
∆tt ∑

n∈C
co

n,t ·
V̇n,t

ηn

)
+

maintenance costs︷ ︸︸ ︷
∑

n∈C
MN

n +c(low/high)
net · ∑

t∈T
∆ttV̇grid,t︸ ︷︷ ︸

network connection f ees

+c(low/high)
p ·V̇ max

grid︸ ︷︷ ︸
peak−power costs

(1)

The operational expenditures, Eq. (1), typically sum fuel and electricity costs, mainte-

nance costs MN
n for all components n, network connection fees, and peak-power costs.

Fuel and electricity costs are the sum of the output power V̇n,t divided by the efficiency ηn

of every component n ∈ C for every time step t and multiplied by the specific operation

cost co
n,t and the duration ∆tt of a time step (Eq. (1)). The maintenance costs M for a unit n

are constant and given in the Supplementary Material A. The network connection fees re-
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sult from the electricity consumption ∑t∈T V̇grid,t multiplied by network connection fees

c(low/high)
net that depend on the time of utilization. The peak power V̇ max

grid multiplied by a

peak-power price cp results in additional operational expenditures OPEX (Eq. (1)). The

peak-power price cp also depends on the time of utilization.

The optimization problem is subject to constraints, which are presented in the following.

∑
n∈C \Cstor

V̇n,t + ∑
n∈Cstor

(V̇ out
n,t −V̇ in

n,t) = Ėt , ∀t ∈T , (2)

A1V̇n,t + Ã1δn,t ≤ b1, ∀t ∈T ,∀n ∈ C , (3)

A2x+ Ã2y≤ b2, ∀t ∈T ,∀n ∈ C , (4)

Vn,t +∆tt · (V̇ in
n,t −V̇ out

n,t ) =Vn,t+1, ∀t ∈T ,∀n ∈ Cstor,

(5)

|V̇grid,t | ≤ V̇ max
grid , ∀t ∈T , (6)

cj =


chigh

j , if ∑t∈T V̇grid,t ·∆tt
V̇ max

grid
≤ 2500 h

clow
j ,otherwise

j ∈ {net,p}, (7)

∑
t∈T

∆tt ·

[(
V̇grid,t · cCO2

t,el
)
+ ∑

n∈Cgas

(
V̇n,t

ηn
· cCO2

t,gas

)]
≤Cmax

CO2, (8)

δn,t ,y ∈ {0,1};x ∈ Ra;V̇n,t ∈ R;Vn,t ,V̇ max
grid ∈ R+ ∀t ∈T ,∀n ∈ C .

Eq. (2) represents the energy balance. The energy balance enforces that the component’s

output power V̇n,t plus the net energy output of the storage units V̇ out
n,t − V̇ in

n,t meet the en-

ergy demand Ėt for every time step t. Eq. (3) is the generic representation of further

(in)equalities with the coefficient matrices A1, Ã1, and the vector b1. These (in)equalities

determine the component’s binary on/off status δn,t and the current part-load performance.

Surrogate Eq. (4) summarizes additional constraints such as constraints for describing

unit behavior, e. g the photovoltaics output limitation, or the choice to either charge or

discharge storage systems. The detailed MILP model of the low-carbon utility system,

including part-load behavior, minimal loads, and linearizations, is presented in Supple-
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mentary Material A.

Long term operational optimization is challenging due to both time coupling constraints

and variables which occur in the following equations. In the storage energy balance

Eq. (5), the net energy input of the storage units V̇ in
n,t − V̇ out

n,t couples the current storage

level Vn,t to the future storage level Vn,t+1. Thereby, the storage balance is a coupling

equation for the entire time series.

Eq. (6) ensures that the peak power V̇ max
grid is the maximum power exchanged with the grid.

Thus, V̇ max
grid is a time-coupling variable for the entire time series. The network connection

fees as well as the peak-power price depend on the time of utilization, e. g in Germany

(StromNEV, 2005). Eq. (7) determines the price c(low/high)
i as a function of the time of uti-

lization. The dependence of prices on the time of utilizationis reformulated using MILP

constraints, resulting in both time-coupling constraints and variables. Eq. (8) sets an up-

per limit for greenhouse gas emissions Cmax
CO2 from electricity usage and all gas-consuming

units Cgas. This emission limit represents a coupling constraint for the entire time series.

Overall, Eq. (5-8) represents a long-term operational problem that includes long-term

time-coupling constraints and variables. In the next section, we propose the time-series

decomposition-based solution algorithm DeLoop to solve such long-term operational prob-

lems.
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3. Time-series decomposition for long-term operational optimization

The proposed time-series decomposition-based solution algorithm, DeLoop, generates

feasible solutions of long-term operational optimization problems with known solution

quality. In this section, we first present the idea underlying DeLoop and then the details

of the time-series decomposition.

3.1. Solution method

DeLoop provides lower and upper bounds for the operational optimization problem (Eq. (1-

8)). Deloop computes these lower and uppd bounds in a parallel computing mode (Fig. 1).

After each calculating of a new upper bound, we calculate the optimality gap ε and check

if the desired optimality gap εDeLoop is satisfied.

ε :=
OPEXupper bound −OPEXlower bound

OPEXupper bound ≤ εDeLoop. (9)
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decrease
number of

subproblems

gap>εDeLoop calculate
lower bound

(Branch-and-Cut)

initial
heuristic

(i)

decompose
complicating

constraints and
variables

(ii)

combine
subsolutions for

upper bound

(iv)

(iii)
solve

subproblem
1

gap≤ εDeLoop

solve
subproblem

2

solve
subproblem

n

(iii) (iii)...

Figure 1: Overview of the proposed time-series decomposition method DeLoop to create
feasible solutions of operational optimization problems with known solution quality.
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Upper bounds are obtained from feasible solutions. These feasible solutions are com-

puted by decomposing the original operational problem into smaller subproblems. The

upper bound is tight if the impact of time-coupling constraints and variables is small. The

tightness of the upper bound is commonly unknown prior to optimization. The upper

bounds are tightened if the desired optimality gap εDeLoop is not satisfied. DeLoop tight-

ens the upper bounds by iteratively decreasing the number of subproblems and thereby

DeLoop improves the representation of time coupling within the decomposition. In gen-

eral, the original long-term operation problem can be decomposed into any number of

subproblems (less than or equal to the size of the time series T ). Each of the subpoblems

represents a subsequence of the full time series. However, the subproblems should prefer-

ably have a similar number of time steps to achieve similar solution times when solved

in parallel. For simplicity, we only allow integer divisors of the time steps T as possible

numbers of subproblems, which leads to subproblems of the same size. The algorithm for

upper bounds is described in Section 3.2.

For the lower bounds, we relax all binary variables (δn,t ,y ∈ {0,1}) of the operational

problem (Eq. (1-8)), thereby converting the complex MILP into an LP which can be solved

efficiently. This solution of the relaxed problem serves as the first lower bound and is the

root node for the Branch-and-Cut procedure. The lower bound is tight if the impact of

binary decision variables is small. The tightness of the lower bound is commonly un-

known prior to optimization. Subsequently to tighten the lower bound, the Branch-and-

Cut procedure starts by branching on binary variables and cutting off branches that cannot

improve the solution (IBM Cooperation, 2016).

After each calculated upper bound, DeLoop compares the current upper bound to the cur-

rent lower bound to calculate the optimality gap ε . The iterative calculation of the lower

and upper bounds stops when an optimality gap εDeLoop is satisfied. As a post-processing

step, the solution quality can be further enhanced by warm-starting the original problem

with the final solution of DeLoop.
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3.2. Time-series decomposition for the upper bound

DeLoop obtains feasible solutions (upper bounds) of the original long-term operational

problem (Eq. (1-8)) in four steps (Fig. 1):

(i) Initial heuristic to initialize the number of subproblems

(ii) Decomposition of time-coupling constraints and variables

(iii) Optimizing subproblems in parallel computing mode

(iv) Combining subsolutions to upper bound

In step (i), we select an initial number of subproblems. Subsequently, in step (ii), DeLoop

decomposes the long-term operational problem including its complicating constraints and

variables into subproblems. The decomposition into subproblems reduces the overall

complexity of the operational problem. Thus, the subproblems can be solved efficiently

in parallel computing mode in step (iii). In step (iv), the solutions of all subproblems

are combined into a feasible solution of the original operational problems, resulting in

an upper bound. In the following, we present the details of steps (i-iv) of the proposed

time-series decomposition method DeLoop.

Step (i): Initial heuristic

Initialization of the decomposition method DeLoop requires an initial number of subprob-

lems. In principle, one could always start with the maximum number of subproblems. In

practice, we found it more efficient to identify an initial number of subproblems, lead-

ing to minimal computational time for the first solution. To identify a good estimate for

this initial number, a heuristic is employed. The heuristic only defines the initial number

for the decomposition. In our experience, the choice of the initial number only affects

the convergence but not the final optimal solution. The algorithm ensures that the solu-

tion always satisfies the desired optimality gap. Increasing the number of subproblems

decreases the size of the individual subproblems and therefore also the calculation time

per subproblem. However, more subproblems have to be solved in parallel by a limited

number of cores, which might again increase the overall computation time. Thus, the
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calculation time is minimal for a particular number of subproblems.

To efficiently identify a good number of subproblems, leading to low computational time

to generate a first feasible solution, we employ a heuristic that: tests decreasing numbers

of subproblems, starting with the maximum number of subproblems. For each tested

decomposition, we decompose the problem into subproblems but solve only one of the

resulting subproblems. The time for the decomposition and the solution time of the one

subproblem are recorded and extrapolated to the full number of subproblems. DeLoop

decreases the number of subproblems until the extrapolated time increases. Thereby,

DeLoop estimates the number of subproblems, resulting in minimal calculation time at

low computational costs. The identified number of subproblems is selected as the initial

number of subproblems.

Step (ii): Decomposition of time-coupling constraints and variables

First, we decompose all complicating constraints and variables of the subproblems. The

decomposition is generic and conducted automatically based on the type of time-coupling

constraint or variable in 4 steps:

(1) For storage-like constraints (Eq. (5)), we fix start and end values of the storage

level variable for each subproblem. To ensure feasibility, the end value of each

subproblem has to be consistent with the start value of the subsequent subproblem.

In the initial decomposition, the variables representing the start and end values are

fixed to one identical but arbitrary value for all subproblems. In the subsequent

decompositions, the fixed corresponding values are changed to the values resulting

from the preceding optimization. By this adaptation, DeLoop iteratively improves

the solution. We illustrate this iterative improvement for 5 and 4 subproblems in

Fig. 2.

(2) Time-coupling variables like (Eq. (6-7)) are substituted by independent variables

in every subproblem. Thus, for example, network connection fees and the peak-

power prices are calculated for each subproblem separately. Thereby, the resulting

subproblems become independent of each other.
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Figure 2: In DeLoop, start and end values for storage-like constraints are fixed in each
subproblem. In the subsequent decomposition with fewer subproblems (n=4), these start
and end values are taken from the previous optimization results with more subproblems
(n=5). Storage levels are piecewise linear in the actual model.

(3) For time-coupling constraints, like the emission limits in Eq. (8), a fraction of the

limit is allocated to each subproblem. However, equally distributed limits may lead

to poor overall convergence or even infeasible subproblems. Therefore, DeLoop

computes individual limits for each subproblem. To compute individual subprob-

lem limits, e. g of emissions, we first identify the minimal possible emissions by

an independent minimization of the emissions within each subproblem. Then, the

total limit is divided proportionally according to the level of the minimal possible

emissions of each subproblem.
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(4) To improve performance, we extend each subproblem by aggregated time steps.

The aggregated time steps represent the missing parts of the full time series in each

subproblem, but only in an averaged manner. Furthermore, critical time steps can

be added to each subproblem. Critical time steps are case-study specific and often

unknown beforehand. For the optimization of the network connection fees and the

peak-power price, the peak-power demand represents a critical time step. Thus, we

add a critical time step for the expected peak-power demand. Here, the expected

peak-power demand is approximated based on the power demand, the maximal

power produced, and the minimal power consumed by all units. For detailed de-

scription of the identification of see peak power demand see the Supplementary

Material B. Thus, in each subproblem, the corresponding time interval of the long-

term operational optimization is solved with the full accuracy of the time series,

and the rest with low accuracy. For the low-accuracy representation, we use 3 ag-

gregated time steps for each subproblem: (1) one averaged time step for all time

steps before the time interval corresponding to the subproblem, (2) one averaged

time step between the subproblem and the critical time step, and (3) one averaged

time step after the critical time step. Thus, 3 aggregated time steps are added to

each subproblem, except for the first and last subproblem, where only 2 aggregated

time steps are added. In Fig. 3, we illustrate this subproblem extension for 5 sub-

problems and the power demand.
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subproblem 1 subproblem 5subproblem 2 subproblem 3 subproblem 4
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time
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subproblem 2

Figure 3: Illustration of the subproblem extension for 5 subproblems for the power de-
mand time series. a) The full time series is decomposed into five intervals, each belonging
to a subproblem. The time step with the peak-power demand is a potential critical time
step and is highlighted by a dot. b) The time series of subproblem 2 is extended by the
critical time step and by aggregated time steps represented by average values, respectively.

Step (iii): Optimizing subproblems in parallel computing mode

DeLoop decomposes the original problem into smaller and independent subproblems that

can be quickly solved in parallel computing mode. To further enhance computational

speed, the solution of the independent minimization of minimal emissions (step (ii)(3)) is

used to warm-start the optimization of each subproblem.

Step (iv): Combining subsolutions to upper bound

In step (iv), the solutions of the subproblems are combined into a feasible solution for

the original operational problem. For this purpose, the parts of the subsolutions with low

accuracy are discarded, i.e., the added aggregated and critical time steps (step (ii) (4)).

Subsequently, we merge all subsolutions: for each time interval, the subsolution is used

that has solved this time intervall with the full accuracy. After these adaptations, the

combination of all subproblems is a feasible solution. The combination yields a feasible

solution as all time-coupling constraints and variables needed for feasibility have been

decomposed and fixed to the same values in the subproblems, as described in step (ii).
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Then, the time-coupling variables, such as the peak-power demand V̇ max
grid , are recalculated

by taking all merged subproblems. The recalculation contains only fixed parameters; thus,

no further optimization is required. As the time-coupling constraints and variables have

been fixed and the objective function is recalculated, the solution is an upper bound for

the original operational problem.

In the next section, we apply DeLoop to a complex long-term operational optimization

problem with time-coupling constraints and variables.

4. Case study

To validate the proposed time-series decomposition method, we apply DeLoop to a long-

term operational MILP problem based on the synthesis problem presented in Baumgärt-

ner et al. (2019a). We optimize an industrial energy system with 3 boilers, 5 compression

chillers, 4 absorption chillers, 7 heat exchangers, 3 inverters, 1 combined heat and power

engine, 1 photovoltaic system, 1 battery, and 2 storage tanks, one for hot and one for cold

water (Fig. 4). A table with all capacities of the units can be found in Supplementary Ma-

terial A. All results are generated using 4 Intel-Xeon CPUs at 3 GHz and 64 GB RAM.

All MILP problems are solved using CPLEX 12.6.3.0 (IBM Cooperation, 2016), and the

model is written in General Algebraic Modeling System 24.7.3 (GAMS Development

Corporation, 2019). For this case study, 4 cores are employed to solve subproblems in

parallel. We consider one year of operation, because time-coupling constraints and vari-

ables for industrial energy systems often span one year. The time-series have a two-hourly

resolution for demands of steam, low-temperature heating, cooling, and electricity, as well

as solar radiation and electricity grid prices (Fig. 5) from Baumgärtner et al. (2019a).
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Figure 4: Visualization of the design of the energy system used in the case study, con-
sisting of boilers (B), heat exchangers (HEX), a combined heat and power unit (CHP),
absorption chillers (AbC), compression chillers (CC), inverters (INV), a photovoltaic sys-
tem (PV), a heat storage unit (STheat), a cold storage unit (STcool), and a battery (BAT). A
table with all capacities can be found in the Supplementary Material A.
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Figure 5: Full time series for the operational problem: a) energy demands, b) solar irradi-
ation, and c) electricity prices for purchase and selling.
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The original operational problem after the presolve contains 6 ·105 equations and 5 ·105

variables (incl. 2 ·105 binaries) with 18 ·105 nonzero elements. The long-term operational

problem is highly coupled due to the storage and battery systems, an annual emission

limit, peak-power prices, and network connection fees (Eq. (1-8)).

As benchmark, we intended to solve the original operational problem with the General-

Column-Generation (GCG) solver (Gamrath and Lübbecke, 2010; Gleixner et al., 2018).

The GCG solver decomposes coupled problems into independent subproblems and a con-

nective master problem by a Dantzig-Wolfe decomposition and solves the decomposed

problems via the Branch-Cut-and-Price algorithm. However, the GCG solver did not

provide any decomposition besides the trivial decomposition in only one subproblem.

Thus, as benchmark, we solve this one subproblem—ergo the original long-term oper-

ational problem—directly with CPLEX 12.6.3.0 (IBM Cooperation, 2016). In CPLEX,

we employ the deterministic parallel mode such that all methods use the same number

of computational cores. To validate the computational results, we repeat the calculation

for 5 instances generated by statistical noise using Latin hypercube sampling on the data

(±5%) (McKay et al., 2000).

DeLoop finds a feasible solution within a 2 % optimality gap in 5,656 s on average (Fig.

6). The average computational time of the benchmark takes 32 times longer (182,152 s)

to obtain solutions of equal quality. On average, after 786 s, the proposed time-series

decomposition method generates the first feasible solution with known solution quality,

whereas on average, the benchmark takes 55 times longer (43,573 s) to provide the first

feasible solution. Thus, the proposed decomposition method outperforms the benchmark

in all instances by more than an order of magnitude.
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Figure 6: Gap ε of the proposed decomposition method DeLoop and the benchmark
CPLEX as function of the solution time. Final optimality gap ε and solution time of all
calculations are indicated by a marker. The required optimality gap εDeLoop of 2 % is
marked in dotted red.

The solution method DeLoop is further analyzed by the lower bound and the upper bound

of the operational expenditures OPEX of the original instance as a function of the solution

time, Fig. 7. The linear-programming relaxation provides the first bound very quickly af-

Figure 7: Operational expenditures OPEX of the lower and upper bounds of DeLoop as
function of the solution time. The figure includes a zoom on the objective OPEX for better
visualization of the improvement of the upper bound.
Note: The gap ε is evaluated after each iteration of the upper bound; thus, for the first feasible solution of the
original problem after 209 s, no solution quality can be determined. Therefore, the first gap ε is computed for
the second found feasible solution, compare Fig. 6.

ter 255 s. The first lower bound is the solution of the linear programming relaxation of the

MILP, i.e. the root node of the Branch-and-Cut procedure. Within 340 s, the lower bound

of the operational expenditures OPEX rises sharply twice to reach a value just 0.01 %

below its final value. After 340 s, the lower bound is already a very tight relaxation of the
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original long-term operational problem.

For the upper bound, the initial heuristic (step (i)) composes the original problem into

219 subproblems. The solution of these 219 subproblems results in the first upper bound

after 209 s. In subsequent iterations, the solution quality slightly improves as the number

of subproblems is iteratively decreased. The improvement is due to subproblems being

larger, which allows the peak power demands and its costs to be reduced and allows the

distribution of the total emission limit among the subproblems to be improved. At 3425 s,

with a decomposition into 30 subproblems, a large improvement in solution quality is

achieved by reducing the network connection fees. At this point, a gap of 3 % is reached,

which, for this case-study, is set as the starting gap for the post-processing warm-start

procedure. The warm start satisfies the desired optimality gap of 2 % after a total com-

putational time of 4,548 s. Considering fewer but longer subproblems enables DeLoop to

better represent long-term effects. By the iterative solution approach, DeLoop identifies

the maximal length necessary for the subproblems to accurately consider all long-term ef-

fects. Accurate consideration of long-term effects reduces operating costs by about 10 %

in the considered case study, as the improvement of the upper bound shows.

The investigated case study shows that DeLoop is very time-efficient for handling time-

coupling in long-term operational optimization problems. Although time-coupling is

very common, not all of the presented time-coupling constraints and variables are al-

ways present at once in operational optimization problems. Therefore, we investigate the

performance of DeLoop for less severe cases of time-coupling. For comparability, we

also use CPLEX as benchmark. Again, to validate the computational results, we repeat

the calculation for 5 additional instances with ±5% variation on the data.

We analyze the solution time for the original case study (all), and 3 further cases of less se-

vere time-coupling, where we exclude different time-coupling equations from the original

long-term operational problem: no emission limits, no network fee, and neither emission

limits nor network fees, Fig. 8. All further cases still include time-coupling due to the

storage and battery systems.



DeLoop: Decomposition-based Long-term Operational Optimization 23

Figure 8: Solution time of the proposed decomposition method DeLoop and the bench-
mark with CPLEX for the investigated combinations of complicating constraints and vari-
ables: all includes all complicating constraints and variables (Eq. (1-8)); thus, all is the
unaltered case study; no emission limits does not include the time-coupling constraint re-
lated to the emission limit (Eq. (1-7)); no network fee does not include the time-coupling
constraints and variables related to the network connection fees (Eq. (1-5 and 8)); neither
includes neither the time-coupling constraints and variables related to the emission limit
nor related to the network connection fees (Eq. (1-5)). The top line of the bar represents
the maximal solution time needed of the 6 investigated instances (marked by max at the
very left bar). The bottom lime represents the minimal (min) and the middle line the
average solution time (mean) of the 6 instances.

In all 6 instances of each of the investigated 3 cases with less severe time-coupling, De-

Loop also outperforms the benchmark, here on average by a factor of 28. In the case of

no emission limits, DeLoop requires 2992 s on average to solve the long-term operational

problem, whereas the benchmark takes 80353 s. For the cases of no network fees and nei-

ther, DeLoop needs about 400 s to find a solution satisfying the optimality gap, whereas

the benchmark takes 30 times as long (≈12000 s).

The investigation shows: combining multiple time-coupling constraints and variables

leads to very challenging optimization problems; the network connection fees increase

the solution time of the problem more than the emission limit as the network connection

fees result in a combination of both a time-coupling constraints and variables; operational

problems considering storage systems alone as time-coupling variable already result in

long computational times.
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Overall, the computational study shows that DeLoop enhances computational speed for

long-term operational problems over a broad range of severeness of time-coupling.

5. Conclusions

Long-term operational optimization of energy systems is challenging. The complexity

of the operational problem strongly increases due to time-coupling constraints and vari-

ables that are common in industrial applications. Additionally, time-coupling constraints

prohibit the direct decomposition of long-term operational problems. As a consequence,

long-term operational optimization is often not solvable within reasonable computational

time or memory limits. In this paper, we propose a time-series decomposition method

(DeLoop) providing feasible solutions with known solution quality. The method de-

composes the original long-term operational problem with time-coupling constraints into

smaller subproblems. These subproblems can be quickly solved in parallel computing

mode. Subsequently, DeLoop recombines the subproblem solutions into a feasible so-

lution of the original long-term operational problem while still representing a rigorous

decomposition. The method is generally applicable to long-term operational problems

considering time-coupling constraints and variables. In future work, DeLoop could be ex-

tended to design problems. Design problems introduce further time-coupling constraints

and variables which cannot be directly solved using the suggested decomposition. How-

ever, DeLoop could be used in the underlying operational problems and thus be integrated

into solutions frameworks including the design stage.

DeLoop is applied to an operational problem of an industrial energy system that exhibits

both time-coupling constraints and variables. Time-coupling is due to storage systems,

emission limits, peak-power prices, and network connection fees. First, the case study

illustrates the importance of long-term operational planning, as significant cost reduc-

tions of about 10 % can be achieved. Second, the proposed method DeLoop provides

fast convergence, outperforming a commercial solver in a large computational study on

average by a factor of 32. Third, DeLoop also outperforms a commercial solver for less
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severely time-coupled problems on average by a factor of 28, showing the broad applica-

bility of DeLoop. DeLoop is very time-efficient for handling time-coupling, thus renders

real world long-term operational problems solvable. Thereby, DeLoop enables significant

cost reductions for these real-world applications. In general, operational optimization of

energy systems should consider both long-term constraints and forecast uncertainty. In

this paper, we consider only certain predictions about future parameters. The integration

of uncertainty would be an important extension. A potential extension could handle uncer-

tainty via receding-horizon optimization, where the operation schedule is frequently opti-

mized based on updated forecast data. As our method enables fast computation, DeLoop

could be used in a frequent receding-horizon optimization to account for uncertainty. This

concept will be explored in future work.
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